
Introduction to Java Distributed Objects - Using RMI and CORBA

Welcome to the Course

Description:

This course introduces how to program distributed objects using Java Remote
Method Invocation (RMI) and using the Common Object Request Broker
Architecture (CORBA)

Prerequisites:

To get the most out of this course, you need to be an experienced Java
programmer

Objectives:

When you have completed the course, you should be able to:

Contrast RMI and CORBA both at the conceptual and technical levels
Write simple RMI and CORBA programs using the Java Development Kit (JDK)
version 1.2

Welcome to the Java distributed objects course! Before we start, let's cover
a few details. First of all, what should your background be? To get the most
out the course, you already be a pretty good Java programmer. We will not
cover any Java syntax. In particular, you should be comfortable with the
notions of classes, interfaces, applications and applets. You don't need any
background in distributed objects, however.

When you finish the course, you should have a pretty good idea about how
distributed objects work in Java. You should also be able to code simple
programs using either RMI or CORBA.

Now on to our agenda!

Agenda

An analogy - using technology to solve a distributed office environment problem
An introduction to distributed object technologies
Coding with Java RMI -- a complete introduction
Coding with CORBA using the JDK 1.2 Object Request Broker

Here's what we will cover in this course: We'll start by using an analogy to
introduce the notion of distributed processing - we'll look at a fictitious
company with growing pains and how they used technology to make their
distributed office environment work. Then we'll take these notions and use
Java RMI and CORBA to solve a similar programming problem, that is, how
to access objects that reside on different computers.

While doing so, you will see actual coding samples that use RMI and
CORBA. We will place special emphasis on the deployment of these coding
samples, since it turns out that deployment is the often the hardest part of
using these technologies.

But let's get started by looking at the Twisted Transistor company, which
needs to grow while remaining efficient.

Twisted Transistors, Inc. : the Beginning

Once upon a time, Jill and Bill started a new company named Twisted
Transistor, Inc. to manufacture LCD panels for laptop computers. At the
beginning, with only a few people in the company, and only one building, life
was easy. When they needed to meet, they just walked over to someone's
office and hashed things out. All of their work was done at one location, and
communication was simple.

Twisted Transistors, Inc.: Growing Pains

But then a funny thing happened: the company grew, and soon found that it
needed more space. The problem was, office space was expensive in their
town, so they rented a building in Silver City, 10 miles away. This gave them
more space to work and to manufacture product, but now things that were
easy before became difficult.

For example, running a meeting was a nightmare compared to before. How
could they get all of the meeting participants together? First they tried
shuttling employees from one building to another, but that wasted too much
time in transit. Then they tried conference calling, but found that to be
awkward and it was difficult to show technical diagrams and presentations to
each other.

What Twisted Transistors needed was a way to make it seem like
employees were together, when in fact they were spread out geographically.

Twisted Transistors, Inc.: Communication Nirvana!

To solve their meeting problem, Twisted Transistors purchased a
communication system that included a virtual whiteboard and video
teleconferencing. With the new system, even though the employees were
located in another city, they could interact almost as if they were physically
together. That way, the company could take advantage of the lower
overhead costs in Silver City, but still all work as a group.

This solution required an infrastructure -- the two buildings needed to be
connected with a leased-line network system and required special setup
instructions to start the whiteboard and teleconferencing.

The system wasn't perfect, but it was the best available until Star-Trek-like
transporters become available.

Introduction to Distributed Objects

remote
object

client computer object server computer

The big problem Twisted Transistor had was making people in a remote location easily
accessible. We can have the same issue with applications that we write. Often,
applications grow, just like Twisted Transistor did - the program might start out as a
single-user program, but may expand to allow multiple people to access the program at
the same time.

And remember, Java is an object-oriented language, so our real problem is: how do we
work it so that programs running one computer can call methods on objects that reside
on another? If we can pull this off, then we can distribute the computing load across
networks - instead of writing standalone, single user programs, we can write programs
that fully utilize our network.

Such programming is often referred to as client/server programming - the program
issuing the method calls is the client, and the computer that supplies the remote object
is the server.

Twisted Transistor solved their meeting problem by allowing people in separate offices
to interact naturally - our goal here is to find technology so that remote and local objects
can interact naturally.

Why Java for Distributed Objects?

Java is an easy-to-use, intuitive language that enforces O-O programming

Java works on many platforms

The Java infrastructure can automatically download code to client computers

Java tools are becoming mature and widespread

Potential downside: execution speed versus compiled languages like C++

If you've decided that distributed objects are a good thing, your next job is to choose a
distributed object infrastructure and your programming language. We'll come back on
the infrastructure part in just a moment, but now let's talk about the programming
language.

This tutorial covers distributed objects using the Java programming language. Why
Java? Because Java is ideally suited to the task. Most distributed object programs run
on a mixture of operating systems, for example Windows for the client and a UNIX
variant such as IBM's AIX for the server. Since Java itself is platform neutral, it lets you
develop, test and deploy across different platforms without having to change languages.

In addition, the tool market for Java is exploding. Vendors such as IBM are developing
powerful application servers that serve up Java distributed objects using technologies
like Enterprise Java Beans. While we will not cover EJBs here, their use of Java helps
to validate our choice of Java for this tutorial.

Finally, we would be remiss if we didn't at least mention that Java is not always the
solution. During this program, we will discuss one infrastructure technology, CORBA,
that lets you use compiled languages such as C++ whenever performance is the
ultimate criteria.

Distributed Object Infrastructures

Java Remote Method Invocation (RMI)

Common Object Request Broker Architecture (CORBA)

Microsoft's Distributed Component Object Model (DCOM)

Enterprise Java Beans (EJB)

Here we show a list of some of the important infrastructure technologies for
developing distributed objects. In this tutorial, we will concentrate on the first
two and compare and contrast them.

That's not to say that other technologies have no merit; just that we will not
cover them here.

Finally, many experts in the distributed object field believe that eventually, all
of these technologies will interoperate, so that clients and servers of each
type will be able to communicate with objects on servers of other types.

Introduction to RMI

MyRemoteObject o = ...;

o.myMethod ();

Sample Client Code

client

server

remote
object

Note: All of the code in this course has been compiled and tested with JDK 1.2,
Release Candidate 1. Please consult the documentation for the version of the
JDK that you are using for details on changes for that version.

We will start our discussion of distributed object technologies with Java's
Remote Method Invocation, which was introduced in Java 1.1.

RMI's purpose is to make objects in separate virtual machines look and act
like local objects. The virtual machine that calls the remote object is
sometimes referred to as a client. Similarly, we refer to the VM that contains
the remote as a server.

Obtaining a reference for a remote object is a bit different than for local
objects, but once you have the reference, you call the remote object just as if
it was local as shown in the code snippet. The RMI infrastucture will
automatically intercept the request, find the remote object, and dispatch the
request remotely.

This location transparency even includes garbage collection. In other words,
the client doesn't have to do anything special to release the remote object --
the RMI infrastructure and the remote VM handle the garbage collection for
you.

RMI Architecture

- skeleton

- remote object

client

- stub

server

RMI Transport

RMI Transport

MyRemoteObject o = ...;

o.myMethod ();

Sample Client Code

To achieve location transparency, RMI introduces two special kinds of
objects known as stubs and skeletons.

The stub is a client-side object that represents the remote object. The stub
has the same interface, or list of methods, as the remote object, but when
the client calls a stub method, the stub forwards the request via the RMI
infrastructure to the remote object, which actually executes it.

On the server side, the skeleton object takes care of all of the details of
"remoteness" so that the actual remote object doesn't need to worry about
them. In other words, you can pretty much code a remote object the same
way as if it were local -- the skeleton insulates the remote object from the
RMI infrastructure. During remote method requests, the RMI infrastructure
automatically invokes the skeleton object so it can do its magic.

The best news about this setup is that you don't have to write the code for
the stubs and skeletons yourself! The JDK contains a tool, rmic, that creates
the class files for the stubs and skeletons for you.

Remote Exceptions

client

server

RMI Transport

RMI Transport

java.rmi.RemoteException

Under the covers, RMI uses TCP/IP sockets to communicate remote method
requests. While sockets are a fairly reliable transport, there are many things
that could go wrong. For example, suppose the server computer crashes
during a method request. Or, suppose that the client and server computers
are connected via the Internet, and the client's 'net connection drops.

The point is that there are more things that can go wrong with remote
objects than there is for local objects. And it's important that the client
program be able to gracefully recover from errors.

So that the client knows about such errors, every method that will be called
remotely must throw RemoteException, which is defined in the java.rmi
package.

Server Development Steps Overview

Define a remotable interface
Write a class that implements the remotable interface
Write a server main program that creates an instance of the implementation object and
assigns the object a name
Run the rmic compiler to generate the code for the stubs and skeletons

Now let's take a look at the steps involved in writing the object server. We will look
at the client side in a few moments.

The first thing you need to do is define an interface for the remote object. This
interface defines the methods that the client can call remotely. The big difference
between a remoteable interface and local interface is that remote methods must
throw the exception described on the last page.

Next, you must write a class that implements the interface.

Next, you need to write a main program that runs on the server. This program
must instantiate one or more of the server objects and then typically registers the
remote objects into the RMI name registry so that clients can find the objects.

Finally, you need to generate the code for the stubs and skeletons. The JDK
provides the rmic tool, which reads the remote object's class file and creates class
files for the stubs and skeletons.

Writing a Remote Interface

import java.rmi.*;

public interface Meeting extends Remote
{
 public String getDate ()
 throws RemoteException;
 public void setDate (String date)
 throws RemoteException;
 public void scheduleIt()
 throws RemoteException;
}

Here's the interface definition for a simple remote interface. Objects that
implement this interface provide a three methods: one that returns a string,
one that accepts a string as an argument, and one that accepts no
arguments and returns nothing. As mentioned earlier, these methods must
throw the RemoteException, which clients will catch if something goes wrong
with the communication between the client and server.

Note that the interface itself extends the Remote interface that's defined in
the java.rmi package. The Remote interface itself defines no methods, but
by extending it, we indicate that the interface can be called remotely.

Implementing the Remote Interface

import java.rmi.*;
import java.rmi.server.*;

public class MeetingServer
 extends UnicastRemoteObject
 implements Meeting
{

 private String ivDate =
 new String ("1/1/2000");

 public MeetingServer()
 throws RemoteException
 {
 }

 public String getDate() throws RemoteException
 {
 return ivDate;
 }

. . .
}

java.lang.Object

java.rmi.Server.RemoteObject

java.rmi.Server.RemoteServer

java.rmi.server.UnicastRemoteObject

Now let's look at a class that implements the remote Meeting interface. As is typical,
MeetingServer extends the UnicastRemoteObject class, which provides the basic
behavior required of remote objects. The phrase "Unicast" refers to the fact that each
client stub references a single remote object. In the future, RMI may allow for
"Multicasting", where a stub could refer to a number of equivalent remote objects. With
multicasting, the RMI infrastructure could balance the load between the set of remote
objects.

Here we show the implementation of two methods: the "getDate" method defined in the
Meeting interface, and a no-argument constructor. Notice that both throw the
RemoteException; this is required for constructors and all methods that the client calls
remotely. In this case, the constructor has no useful work to do, but we still need to
define it so it can throw the remote exception.

The "getDate" method is the interesting one, though. It returns a string's reference back
to the caller. While this may look simple, the RMI infrastructure and the skeletons and
stubs actually have a lot of work to do here. They all must conspire so that a copy of the
string is passed back to the client and then recreated as an object in the client's virtual
machine.

Writing an RMI Server Overview

import java.rmi.*;
import java.rmi.server.*;

public class MeetingServer extends UnicastRemoteObject
 implements Meeting
{
 . . .

 public static void main (String [] args) throws
 RemoteException, java.net.MalformedURLException,
 RMISecurityException
 {
 // 1. Set Security Manager
 // 2. Create an object instance
 // 3. Register object into the name space
 }
}

In addition to implementing the interface, we also need to write the server's main
program. RMI currently does not support server programs as applets, so the main
program needs to be a standalone Java application. You can either code a separate
Java class for main, or you can just code a main method in the implementation class as
we did here.

Note also that we coded the main function to throw any RMI-related exceptions to the
command line. That's OK for a small sample program like this, but in a real program you
will probably instead bracket the steps that follow in separate try-catch blocks so you
can perform better error handling.

The steps that the server main typically does are:

1. Install a security manager class that lets the server program accept stub classes from
other machines
2. Create an instance of the server object
3. Register the server object into the RMI naming registry so that client programs can
find it

Let's now take a closer look at each of these steps.

Setting the Security Manager

import java.rmi.*;
import java.rmi.server.*;

public static void main (String [] args) throws
 RemoteException, java.net.MalformedURLException,

 RMISecurityException
 {
 System.setSecurityManager (
 new RMISecurityManager());

 MeetingServer ms = new MeetingServer();

 Naming.rebind (
 "rmi://myhost.com/Meeting", ms);
 }

The first step is to install the RMI security manager. While this is not strictly required, it
does allow the server virtual machine to download class files. For example, suppose the
client calls a method in this server that accepts a reference to an application-defined
object type, for example a BankAccount. By setting the security manager, we allow the
RMI runtime to copy the BankAccount class file to the server dynamically - that eases
the configuration on the server.

The downside to letting RMI dynamically download such classes is that it's a security
risk. In other words, we are essentially letting the server execute code from another
machine. While we hope that these class files are not going to harm the server, if you
want to avoid the risk, your RMI server should not install a security manager. You must
then ensure that all class files are installed locally in the server's classpath.

And now just an aside before we move on: passing object argument types is actually a
pretty involved topic, since there are two ways to do it. One way is to pass only a
reference across the communication wire; the other is to serialize the object and create
a new object remotely. We will not discuss these any further since we don't have
enough time, so you should read the RMI documentation in the JDK for more details.

Naming the Remote Object

import java.rmi.*;
import java.rmi.server.*;

public static void main (String [] args) throws
 RemoteException, java.net.MalformedURLException,

 RMISecurityException
 {
 System.setSecurityManager (
 new RMISecurityManager());

 MeetingServer ms = new MeetingServer();

 Naming.rebind (
 "rmi://myhost.com/Meeting", ms);
 }

The next server job is to create an initial instance of the server object and
then write a name for the object into the RMI name registry. The RMI name
registry lets you assign URL names to objects so that clients can look them
up To register the name, call the static rebind method, which is defined on
the Naming class. This method accepts the URL name for the object and the
object reference.

The name string is the interesting part. It contains the rmi:// prefix, the
hostname of the computer where the RMI object's server runs, and the
object's name itself, which is pretty much whatever you want. Note that
instead of hard-coding the hostname as we did here, you can call the
getLocalHost method defined by the java.net.InetAddress class.

Generating the Stubs and Skeletons

MeetingServer.class

rmic

MeetingServer_Stub.class

MeetingServer_Skel.class

After writing and compiling your server implementation, you're ready to
create the stubs and skeleton classes. And that's easy to do: just run the
JDK's rmic command, specifying the name of your implementation class file
(without the extension). RMIC will create a class file each for the stub and
skeleton. You will then need to deploy these files properly, which we will
cover after we cover writing the client-side code.

Client Development Overview

Determine whether you want to write a client application or applet
Write the client to look up the object in the naming registry
Call remote methods

Now let's take a look at the client side. First, you must determine whether
you want to write a client standalone application or a client applet.
Applications are a bit simpler to setup, but applets are easier to deploy since
the Java and RMI infrastructure can download them to the client machine.
We will cover how to do both kinds.

In your client, the code needs to first look up the remote object using the
RMI registry. Once you have done so, the client can then call the methods
defined by the remote interface.

Applications vs. Applets

Web Server

applet
.class
files

applet
.html
files

http protocol
public void init()
{
 // RMI initialization
}

browser

application

public static void maint()
{
 // RMI initialization
}

application
.class
files

Let's take a quick look at the differences between Java applications and
applets. If you write an application, you must define a main entry point in
which you can execute the RMI startup code. You must then install the
application's class files on the client machine. If you have multiple client
computers, you must manually install the application's class files on each.
And, as we will see in a while, you will also need to install some RMI-related
server files on the client application computer.

If you decide to write an applet instead, you won't have a main entry point.
Instead, the applet overrides the "init" method, which is called by the
browser. You can do the same sort of code in init that you would in an
application's main. The main advantage of applets is that you don't need to
pre-install anything on the client computer except for the browser - the RMI
and Java infrastructure will download all of the required class files
automatically. Note that you do need to write an HTML file that the browser
can load, though - we will cover all of this coming up.

Writing an RMI Client Application

import java.rmi.*;

public class MeetingClient
{
 public static void main (String [] args)
 throws RemoteException,
 java.net.MalformedURLException,
 java.rmi.NotBoundException
 {
 // 1. Set Security Manager
 // 2. Look up remote object from name space
 // 3. Call remote methods
 }
}

Now let's examine the steps involved in writing an RMI standalone
application. As usual, we code the "main" method as the entry point, and in
it, we perform the RMI initialization steps. We first set the security manager
so that the RMI runtime can download class files, then obtain a reference to
the remote object by using the RMI naming registry. Then we can call
remote methods.

While this code shows calling remote methods only in the "main" method,
once your application has retrieved the object reference, the application can
call methods during other methods, too. In addition, note that there's no
clean-up required; the Java and RMI infrastructure work together to make
sure that garbage collection work, even on remote objects.

We will now examine these steps in more detail.

Setting the Security Manager

import java.rmi.*;

 public static void main (String [] args)
 throws RemoteException,
 java.net.MalformedURLException,
 java.rmi.NotBoundException
 {
 System.setSecurityManager(new RMISecurityManager());

 . . .

 }

This code looks similar to code in the object server main - like the object
server, a client application also can optionally set a security manager. And
the reason is similar too: the RMI runtime will automatically download the
remote object's stub class file to the client, but can only do so if the
application installs a security manager. If the application uses the default
security manager, you will need to pre-install the stub class files in the client
computer's classpath or else the application will catch a security exception.

You should also note that in this code, the main method simply throws
RMI-related exceptions back to the command line. A more robust application
would contain try-catch blocks to localize error processing.

Looking up an Object

import java.rmi.*;

 public static void main (String [] args)
 throws RemoteException,
 java.net.MalformedURLException,
 java.rmi.NotBoundException
 {
 System.setSecurityManager(new RMISecurityManager());

 Remote r = Naming.lookup (
 "rmi://myhost.com/Meeting");

 . . .

 }

Once the application has installed a usable security manager, it can then
retrieve the remote object's reference from the RMI naming registry. To do
so, call the static "lookup" method, passing the same name under which the
object server registered the remote object. The "lookup" method will retrieve
a reference to the remote object and create a stub object, here stored in the
variable named "r".

If the name supplied by the client doesn't match a name in the registry, the
"lookup" method throws the NotBoundException. If the supplied URL is not
valid, "lookup" throws MalformedURLException. In this simple code snippet,
we don't explicitly catch these exceptions, but you would in a real-world
program.

Note the type of the returned reference: it's of type Remote, which is the
superclass of all remote objects. But we really want a reference to a Meeting
interface as defined in the remote interface. Therefore, we will need to
down-cast the reference as described on the next page.

Calling Remote Methods

import java.rmi.*;

 public static void main (String [] args)
 throws RemoteException,
 java.net.MalformedURLException,
 java.rmi.NotBoundException
 {

 . . .
 Remote r = Naming.lookup (
 "rmi://myhost.com/Meeting");

 String s = null;

 if (r instanceof Meeting)
 {
 ms = (Meeting)r;
 s = ms.getDate();
 }
 }

Before the application can call remote methods, it must convert the remote
reference's type to match the interface definition, in this case, HelloInterface.
While you can do this with a simple cast, the code shown here first checks to
see if the cast is valid by calling the instanceof operator. This technique lets
you avoid an InvalidCast runtime exception if the type of the remote object
isn't what you expect.

Once we have successfully casted the reference, we can then call remote
methods; here the "getDate" method which returns a string.

Writing an RMI Client Applet

import java.rmi.*;

public class MeetingClientApplet extends java.applet.Applet
{
 public void init ()
 {
 try
 {
 // 1. Look up remote object in the RMI registry
 // 2. Call remote methods (can also call from
 // other methods if you save the reference)
 }
 catch (Exception e)
 {
 }
 }
}

Now let's look at the differences when writing an RMI client as an applet rather
than as a standalone application. There are three basic differences:

1. You typically code the RMI initialization in the applet's "init" method rather than
in "main"
2. Since you cannot change the method signature of init (you are overriding it from
Applet), you cannot code "init" as throwing exceptions. Thus you must handle
exceptions with try-catch blocks
3. You don't have to install the RMI security manager, since applets automatically
use the AppletSecurityManager, which allows downloading of remote classes

Despite these changes, the RMI-related code in an applet client is basically the
same as in an application. You still use the RMI naming registry to find remote
references, cast the returned reference to the correct type, and so forth.

One other difference between applets and applications -- to use an applet from
within a browser, you need to write an HTML page that references the applet. Let's
look at that next.

Writing the HTML Page for the Applet

<HTML>
<title>Meeting Client Applet</title>

. . .

<applet code="MeetingClientApplet" width=500 height=120>
</applet>

</HTML>

Here's a simple HTML file that loads the applet shown on the last page. The
key line is the "applet" tag, in which we specify the applet's class file (no file
extension). We will then need to install the HTML file and the applet class
file on a web server. When the user displays this page in their Java-enabled
browser, the browser will download the applet class file to the client
computer and call the "init" method, which in this case, commences RMI
communication.

Our next task is to examine how to deploy the RMI code. We will look at both
cases: deploying client standalone applications, and deploying client
applets.

Deployment Overview

Start the RMI Registry running
Start the object server running
Set up the web server
Run the client application or applet

Let's overview the steps involved in deploying an RMI program. We must
first start the RMI registry program running on the RMI object server, then we
can start the object server main program. We also need to set up a web or
ftp server so that the RMI runtime can download class files as described
earlier. Finally, we can run the client application or display the applet's HTML
page in a browser.

Now let's examine each step in more detail.

Starting the RMI Registry

RMI
registry

RMI Object Server

command prompt (on server)

c> start rmiregistry

The first deployment step is to start the RMI naming registry on the object
server computer. The rmiregistry command is included in the Java
Development Kit.

Here we show the command in Microsoft Windows to start the registry in a
separate window - see your operating system's documentation for specific
instructions.

The registry program manages the mapping of names to object references
so that your programs can call Naming.bind to register names and
Naming.lookup to retrieve references.

One caution: make sure that the classpath in effect when you start the
registry does not reference the stub class files on the server. If it does, then
the RMI infrastructure will not download the stub automatically to the client
computer.

Starting the Object Server

command prompt (on server)

c> java -Djava.rmi.server.codebase=http://mywebserver.com/ -Djava.security.policy=mypolicy MeetingServer

RMI
registry

RMI Object Server

remote
object

skeleton

MeetingServer JVM

MeetingServer.class
MeetingServer_Skel.class
Meeting.class

MeetingServer's CLASSPATH:

Web Server root directory
(mywebserver.com)

MeetingServer_Stub.class

mypolicygrant
{
 permission java.security.AllPermission;
};

mypolicy

After starting the registry, we can next start the RMI object server main program on the server computer.
Like starting the registry, this step is independent of whether the client is an applet or an application.

Remember that we coded the main method to create an object and register a name for the object in the RMI
registry. The diagram shows the MeetingServer virtual machine containing the MeetingServer remote object
as well as its skeleton.

The object server virtual machine needs access to all of the class files shown in the diagram: the
MeetingServer main program, the skeleton class file, and the interface class file. Therefore, before starting
the server program, you must ensure that all of these files are in the classpath. The stub class file must be
installed on a web server; note that we reference the web server in the command to start to the object
server main program. In this case, the codebase property specifies only a hostname, not a directory, so the
web server will serve from its default directory. We will direct you to your web server's documentation for
more details on how to setup directories.

Starting in JDK 1.2, RMI servers also need to reference a policy file that grants or denies permissions for the
remote object. In this case, we created a policy file that grants all permissions; that's OK for a sample
program like this one, but it's probably too dangerous for a production environment. Note that we must
specify the policy file when we start the object server.

As before, this page shows the Microsoft Windows command to run the object server main program - see
your operating system's documentation for specific details.

Running a Client Application Web Server root directory
(mywebserver.com)

MeetingServer_Stub.class

command prompt (on client)

c> java -Djava.rmi.server.codebase=http://mywebserver.com/ -Djava.security.policy=mypolicy MeetingClient

client computer

MeetingClient.class
Meeting.class http protocol

rmi protocol

MeetingClient JVM

stub

MeetingClient's CLASSPATH:

RMI
registry

RMI Object Server

remote
object

skeleton

MeetingServer JVM

MeetingServer.class
MeetingServer_Skel.class
Meeting.class

MeetingServer's
CLASSPATH:

mypolicy

mypolicy

Now let's look at running the client program. We'll start by looking at the client as a standalone application,
followed by a discussion of client applets.

The virtual machine on the client computer needs access to the class files for the client program itself and for
the remote interface - you must install these files in the client's classpath. The client also needs access to the
stub class, but you don't need to install this file on the client - the RMI runtime will automatically download
stub classes on demand. Remember to take advantage of this feature, we needed to install a security
manager in the client application. So instead of installing the stub class file on the client, we can place it on a
computer that's running a web server.

When we run the client application (see the command prompt), we specify the codebase property to indicate
where to find the stub class files. If you don't want to have the stubs downloaded dynamically, or if you don't
have a web, you can instead manually copy the stub class files to the classpath on the client computer.

Note that once the stubs have been downloaded, all further interaction with the RMI server uses the RMI
protocol. This includes lookups in the naming registry and remote method calls and returns.

And as we saw with the server, in JDK 1.2 and later, the client needs to use a policy file. Here we have
copied the same policy file as used on the server to the client so we can easily reference it on the command
line.

Note: it's also possible to have the stubs downloaded to the client using the ftp protocol instead of http. See
the JDK documentation for details.

Running a Client Applet
Web Server

public void init()
{
 // RMI initialization
}

client computer

http protocol

rmi protocol

rmiApplet.html
MeetingClientApplet.class
MeetingServer_Stub.class
Meeting.class

My Browser
http://mywebserver/rmiApplet.html

Browser's JVM

stub
RMI

registry

RMI Object Server

remote
object

skeleton

MeetingServer JVM

MeetingServer.class
MeetingServer_Skel.class
Meeting.class

MeetingServer's
CLASSPATH:

mypolicy

Running a client applet is quite a bit different from running a standalone application. One difference is that
you typically run applets from within a browser running on the client computer. Of course, the browser
needs to support Java!

Another difference is that since applets already support downloading of class files, you don't need to
pre-install anything on the client computer except for the browser! Instead, you can place all of the
required HTML and class files on a web server, and the applet and RMI infrastructure will download them
as needed. We also don't need to worry about the policy file on the client.

There is one other complication with regards to applets: if you want the object server and the web server
to reside on different hosts, you will need to learn about digitally signing the applet. That's because, by
default, the browser security manager only allows network access, including RMI methods, back to the
web server. In other words, unless you sign your applet, you will see security violations if you distribute
your objects to a different server than the web server. Digitally signing is a topic beyond the scope of this
short course.

Finally, we should note that its actually possible to write standalone applications so that just about
everything can be downloaded upon demand, similar to as shown here for applets. Consult the JDK
documentation regarding "bootstrapping applications" for more details.

Well, we have now covered enough about RMI to get you started writing and deploying your own
distrubuted programs. Let's now look an alternative infrastructure for distributed objects -- the CORBA
approach.

Introduction to CORBA

Common
Object
Request
Broker
Architecture

Object
Managment
Group

Now that we've covered Java's RMI, let's look at another way to distribute
objects. Like RMI, CORBA lets you write client code that accesses remote
objects. However, there are some significant technical differences as we will
detail on the next page.

The biggest difference though is that, unlike RMI, CORBA is not a part of
Java itself. Instead, an industry consortium known as the Object
Management Group invented CORBA. The OMG itself does not write code;
instead, the consortium debates and publishes specifications. Then, vendors
implement the specifications to produce products known as Object Request
Brokers (ORBs). Some of the major ORB vendors include IBM, Iona, and
Inprise (formerly known as Borland, which purchased the Visigenics ORB
company). But the most exciting ORB news for Java developers is that the
JDK version 1.2 includes an ORB, so you can write Java CORBA code
without having to license any other software. We will use the JDK 1.2 ORB
as our example ORB in this course.

CORBA vs RMI

RMI Java
Languages supported Java Java, C++, C, Smalltalk, etc.
Runtime services Naming Naming, Lifecycle, Persistence, Transactions, etc.
Ease of programming and setup Excellent Good
Scalability Good Excellent (depending on ORB vendor)
Performance Good Excellent (depending on ORB vendor)

Before we cover CORBA in detail, let's compare it technically with RMI. The
basic trade-offs between the technologies are:

- CORBA lets you mix programming languages. In other words, you can
write your client programs and the distributed objects in any CORBA
supported programming language, including Java, C++, C and so forth. RMI,
of course, only supports Java, both on the client and the server.

- CORBA is geared toward larger, more scalable systems, where you might
have thousands of objects. CORBA is more complex to program and deploy
than RMI, but lets you develop enterprise-level systems, where you need
support for transactions, security and so forth. The CORBA Naming Service
is also more powerful and flexible than the RMI Naming Registry.

So which is better? It really depends on your intended application. Hopefully,
you will be able to make a more informed choice after taking this course.

ORB Interoperability and IIOP

ORB A
Internet

ORB B

IIOP

One of the advantages of CORBA is that it is an open industry standard, not
a proprietary technology from a single company. And one of the features of
CORBA is that ORBs that are networked together should be able to
interoperate. In other words, client programs should be able to access
objects spread across multiple ORBs, even if the ORBs are from different
vendors.

To make this work, the OMG has defined a "wire format" for
remote-method-call messages. There are a few implementations of the
wire-format standard, but the best known is IIOP, which stands for Internet
Interoperability Protocol. IIOP lets you connect ORBs together via the
TCP/IP networking protocol and allow them to work together. Since the
Internet uses TCP/IP, you can write clients that access remote CORBA
objects across the Internet.

CORBA Architecture

- skeleton

- remote object

client

- stub

server

ORB

ORB

MyRemoteObject o = ...;

o.myMethod ();

Sample Client Code

IIOP

Now let's take a look at the CORBA runtime architecture. I think you'll see
that it's remarkably similar to RMI: both use the notions of stubs and
skeletons to insulate clients and remote objects from networking details.
One difference is that CORBA uses IIOP to transmit method requests while
RMI has it's own private protocol. However, Sun has promised that a future
release of RMI will also support IIOP. That will make it easier for network
administrators to configure firewalls and the like, especially for installations
that are using both CORBA and RMI.

However, the development steps are quite a bit different for CORBA and
RMI. We will next spend time looking at the differences.

Server Development Steps Overview

Write an Interface Definition Language (IDL) file that describes the remote object's
interface
Choose the programming language that you will use to implement the object
Run the IDL compiler to generate language-specific implementation files, stubs and
skeletons
Code the implementation in chosen language
Write a server main program that creates an instance of the implementation object and
assigns the object a name

Here are the steps for developing a CORBA object.

First, you must describe the object's interface using an OMG-defined language referred
to as the Interface Definition Language (IDL). IDL is not a coding language - it simply
lets you define the object's interface in a language-neutral fashion.

Next, you run an IDL compiler that converts the language-neutral interface definition into
a particular programming language. In most CORBA environments, the IDL compiler
also generates the stub and skeletons at this point, too.

Next you must write the remote object's implementation in your chosen language. Most
IDL compilers generate a "starter" file that contains some of the code required to be a
CORBA remote object.

Finally, you need to write a main program that creates an instance of the remote object.
You can then optionally assign the new object a name in the CORBA Naming Service.

Now that you seen the big picture of CORBA server development, let's take a closer
look at each step.

Defining the IDL for a Remotable Object

interface Meeting
{
 attribute string date;

 void scheduleIt();
};

IDL is an interface-definition language invented by the OMG. It's purpose is to let you describe a remote
object's interface in a programming-language-neutral fashion. IDL syntax is similar to Java or C, however,
it's not the same! We will not attempt to cover the entire IDL grammar in this course, but just focus in on the
basics.

This page shows a simple interface definition in IDL. We use the keyword "interface" to start the definition,
followed by an open brace. We must also supply a matching closing brace along with the terminating
semicolon.

Inside of the interface, we typically define two sorts of things. The first thing shown here is a method named
"scheduleIt" - this method accepts no arguments and returns nothing.

The second line in this interface defines a string attribute named "date". String is a CORBA data type - the
IDL compiler must map each CORBA data type to an equivalent language type. In the case of Java, the IDL
compiler maps CORBA strings to the Java language strings.

The keyword attribute seems to be a data definition, but it's not: instead, each attribute really corresponds to
two methods: a method to retrieve an item of the given type, and a method to modify the item. These two
methods are sometimes referred to as "getters" and "setters" or accessors and mutators. The actual
implementation must provide the code for both of these methods for each attribute.

While we could spend much more time on IDL, we really can't in a short course like this one. You can find
more information about IDL on the OMG web page, which is at www.omg.org.

Running the IDL Compiler

Meeting.idl idltojava _MeetingStub.java
Meeting.java
MeetingHolder.java
MeetingHelper.java
_MeetingImplBase.java

public interface Meeting
 extends org.omg.CORBA.Object
{
 String date();
 void date(String arg);
 void scheduleIt();
}

Meeting.java

The next step is to run the IDL compiler to generate language-specific source files that will implement the
object, stubs and skeletons. Each ORB vendor supplies an IDL compiler; and each compiler works a little
bit differently. Don't let that worry you, though: as long as there is IDL and IIOP, the objects created by
different ORB development environments will be compatible with each other.

Anyway, this page shows running the IDL compiler that's part of JDK 1.2. It generates the following files:
_MeetingStub.java, which implements the stub, Meeting.java which defines the remote interface as a
Java interface, MeetingHolder.java and MeetingHelper.java, which implement some extra classes that
help clients use the remote object and _MeetingImplBase.java. This last file has two jobs: first, it
implements the skeleton for the remote object, and second, it provides a superclass which we can extend
to write the remote object's implementation.

You don't really need to understand the code inmost of these source files; the only one that's really worth
reading is Meeting.java, shown on this page, which defines a Java interface. Note that this Java interface
extends a CORBA-defined interface, and includes three methods:a "getter" and a "setter" for the "date"
attribute, and the "scheduleIt" method. Our next job will be to implement these methods.

One other note: as of this writing, the idltojava compiler is not included with the JDK. Instead, you must
download it separately from the www.javasoft.com web site. See the JDK documentation for more details.

Writing the Remote Object Implementation

public class MeetingServant extends _MeetingImplBase
{
 private String ivDate = new String ("1/1/2000");

 public String date()
 {
 return ivDate;
 }

 public void date (String arg)
 {
 ivDate = arg;
 }

 public void scheduleIt()
 {
 // do some scheduling stuff
 }
}

Now we must write the class for the remote object. By convention, we name
such classes so that they have the word "Servant" in their names, here
MeetingServant. Note that this class is NOT generated by the IDL compiler -
you must write it from scratch. An aside: Other ORB development
environments work differently than the JDK 1.2 ORB. Some IDL compilers
actually generate part of the implementation class for you, requiring you
more or less to fill in the blanks. Not so with JDK 1.2 though; it requires you
to write the entire implementation class.

Here, we extend _MeetingImplBase, which is the stub, and implement the
methods from the Meeting interface, which was shown on the last page. To
implement the attribute methods, we define a private Java string variable,
ivDate, and retrieve or modify it during the "getter" and "setter" methods. We
didn't really write much of an implementation for the "scheduleIt" method -
we'll leave that as an exercise for the student!

Writing an Object Server Overview

Initialize the ORB
Create an instance of the remote object
Connect the remote object to the ORB
Assign the remote object a name in the CORBA Name Service

Just like we did with RMI, we need to write a main program that acts as the
object server. Here we overview the steps involved. First, we must initialize
the server-side object request broker runtime; then we can create an
instance of the remote object class we saw on the last page. Next, we must
inform the ORB about the new object so it can be called remotely; we refer
to this process as connecting the object to the ORB. Finally, we can assign
the new object a name so that clients can find it - again this technique is
quite similar to what we saw with RMI.

Let's now look at these steps in detail.

Object Server Initialization

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;

public class MeetingServer
{
 public static void main (String[] args)
 {
 try
 {
 ORB orb = ORB.init (args, null);

 MeetingServant h = new MeetingServant();
 orb.connect (h);

. . .

 }
 catch (Exception e)
 {
 System.out.println ("Error: " + e);
 }
 }
}

Here we show part of the main program for the object server. Note the
import statements that let us reference the CORBA classes defined as a part
of the JDK.

Our first job, initializing the ORB, is easy - we just need to call the static "init"
method defined on the ORB class. This method accepts two arguments: any
command line arguments that were passed to the server program itself, and
a Java properties object which you can use to configure some ORB
characteristics. We set the second argument to null to indicate that we didn't
need to configure these properties. The command-line arguments also let
you configure ORB properties, such as the port on which the ORB listens for
method requests. We really won't use them, either - we coded like this so it
will work if we do decide to pass arguments on the command line.

Next, this code creates an instance of the MeetingServant remote object.
We must next connect to object to the ORB - that makes the object callable
from outside of the server virtual machine.

Naming an Object

public class MeetingServer
{
 public static void main (String[] args)
 {

. . .

 org.omg.CORBA.Object o =
 orb.resolve_initial_references ("NameService");

 NamingContext ns = NamingContextHelper.narrow (o);

 NameComponent nc = new NameComponent ("Meeting", "");
 NameComponent path[] = {nc};

 ns.rebind (path, h);

. . .

CORBA defines an elaborate and powerful naming service, which you can use to make it easy for
clients to find objects. The CORBA name service has much more function than the RMI naming
registry. For example, in CORBA, you can organize your names into "contexts", which are similar in
concept to directories on a file system. The trade-off is that the CORBA name service methods are
more cumbersome than we saw with the RMI registry.

The code shown here first accesses the naming service itself by calling resolve_initial_references. This
method returns a reference to the so-called "root context", which is similar to the root directory on a hard
disk. We then call a special method named "narrow" to cast the returned reference to the correct type.
This notion of narrowing is a CORBA programming idiom - it works much like a Java cast. For any given
interface, the "narrow" method is defined on the "helper" class generated by the IDL compiler.

Once we have a correctly typed reference to the root context, we can then assign a name to the
MeetingServant object that we showed creating on the last page. To do this, we need to define an array
that contains the full name of the object, starting at the root. Since we will assign this name directly in
the root context, the array contains a single NameComponent element. I think you can see that this is
much more involved than the simple RMI registry!

Once we have built the name into the array, we can call the "rebind" method on the root naming context,
passing the naming array and the MeetingServant object reference. Rebind stores the name and object
reference in the name service, silently overwriting it if the name already exists.

Waiting for Method Requests

public class MeetingServer
{
 public static void main (String[] args)
 {

. . .

 java.lang.Object sync = new java.lang.Object();
 synchronized (sync)
 {
 sync.wait();
 }

. . .

}

Once it has finished initialization, the object server must then wait patiently
for method requests, which the ORB automatically dispatches to the servant
objects. Here we show executing a simple wait-loop that keeps the server
alive, while allowing method requests to be dispatched.

Client Development Overview

Determine whether you want to write a client application or applet
Write the client to:

Initialize the ORB and Naming Service
Look up the object in the Naming Service
Call remote methods

Writing a CORBA client is quite similar to writing an RMI client. You first
need to decide whether to write a standalone application or a client. At
present, it's a bit more straightforward to write standalone applications, since
browser support for CORBA is somewhat immature.

Whether you write an applet or application, the client needs to first initialize
the client-side ORB and then create a stub for the remote object using the
CORBA Name Service. The client can then call remote methods.

We will start by discussing how to write standalone Java clients, followed by
a quick discussion on applets.

Writing a Client Application

import org.omg.CosNaming.*;
import org.omg.CORBA.*;

public class MeetingClient
{
 public static void main (String[] args)
 {
 try
 {
 // 1. Initialize the ORB
 // 2. Resolve to the name service
 // 3. Look up the object in the name service
 // 4. Call remote methods
 }
 catch (Exception e)
 {
 }
 }
}

This page overviews the structure of a client standalone application. Note
the import statements and the fact that we enclose the main code in a
try-catch block for error processing. A more sophisticated error-handling
scheme would be to issue each CORBA and remote method call in a
separate try-catch block so that you can code more specific error-response
code.

Initializing the ORB

public static void main (String[] args)
{
 . . .

 ORB orb = ORB.init (args, null);

 org.omg.CORBA.Object o =
 orb.resolve_initial_references ("NameService");

 NamingContext ns = NamingContextHelper.narrow (o);

 . . .
}

The client code to initialize the ORB and the name service is pretty much
identical to what we saw in the object server. We first call the static ORB.init
method, which initializes the client-side ORB and returns a its reference.
Then we can retrieve a reference to the naming service by calling
"resolve_initial_references". We must then narrow, or cast the name service
reference to its correct type.

Next we will see how to look up a remote object's reference from the name
service.

Looking up an Object

public static void main (String[] args)
{
 . . .

 NameComponent nc = new NameComponent ("Meeting", "");
 NameComponent path[] = {nc};

 o = ns.resolve (path);
 Meeting m = MeetingHelper.narrow (o);

 . . .

}

The name service reference we retrieved on the last page actually refers to the
root naming context in the naming service. Recall that the CORBA naming service
lets you create a hierarchy of naming contexts that are similar to directories on a
hard disk; the root naming context is thus similar to the root directory on a disk.

You should also recall that in the object server, we registered a remote Meeting
object's reference in the root context using the name "Meeting". So here, in the
client, we retrieve the object reference given that name.

To compose the name, we create an array, with an element for each level that the
name descends into the naming hierarchy. Since we registered the name in the
root context, the array needs only a single element.
Once we have initialized the array, we then retrieve the object reference by calling
the "resolve" method, passing the naming array.

After retrieving the reference, we follow normal CORBA programming practice of
narrowing, or casting the reference to the correct type, "Meeting", in this case.

Calling Remote Methods

public static void main (String[] args)
{
 . . .

 m.date ("2/2/2000");

 System.out.println ("date string attribute: "
 + m.date());

 m.scheduleIt();

 . . .

}

Once we have a valid reference for the remote meeting object, we can call
its methods. When we defined the Meeting interface, we specified an
attribute named "Date", and a method named "scheduleIt". Here we call the
"setter" and "getter" methods for the attribute and then call the scheduleIt
method, which accepts no arguments and returns nothing.

Remember that each method call is actually dispatched remotely - the
reference we hold in the variable "m" actually refers to a stub object on the
client. When we call the stub, it forwards the method request, via the ORB,
to the remote Meeting object. When the method returns, the process
reverses itself: the server-side ORB notifies the client-side ORB of any
results of the method, causing the stub to return back to the caller.

Writing a CORBA Client Applet

import org.omg.CosNaming.*;
import org.omg.CORBA.*;

public class MeetingClientApplet extends java.applet.Applet
{
 public void init ()
 {
 try
 {
 // 1. Initialize ORB and name service
 // 2. Look up remote object in the name service
 // 3. Call remote methods (can also call from
 // other methods if you save the reference)
 }
 catch (Exception e)
 {
 }
 }
}

Now let's look at the differences when writing an CORBA client as an applet
rather than as a standalone application. Here are the basic differences:

1. You typically code the CORBA initialization in the applet's "init" method
rather than in "main"
2. The CORBA.init method is a bit different for applets - the first argument is
the "this" pointer for the applet itself

Despite these changes, the CORBA-related code in an applet client is
basically the same as in an application. You still use the CORBA name
service to find remote references, narrowt the returned reference to the
correct type, and so forth.

One other difference between applets and applications -- to use an applet
from within a browser, you need to write an HTML page that references the
applet. And it turns out that the HTML for CORBA applets is quite messy as
we will see next.

Writing the HTML Page for the Applet

<HTML>
<title>Meeting Client Applet</title>
<center> <h1>Meeting Client</h1> </center>

The message from the MeetingServer is:
<p>

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH = 500 HEIGHT = 120
codebase="http://java.sun.com/products/plugin/1.1.1/jinstall-111-win32.cab#Version=1,1,1,0">
<PARAM NAME = CODE VALUE = "MeetingClientApplet" >

<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1">
<COMMENT>
<EMBED type="application/x-java-applet;version=1.1"
java_CODE = "MeetingClientApplet" WIDTH = 500 HEIGHT = 120
pluginspage="http://java.sun.com/products/plugin/1.1.1/plugin-install.html">
<NOEMBED></COMMENT>

</NOEMBED></EMBED>
</OBJECT>

</HTML>

Look at this mess! The good news is that you don't have to write all of this (unless you
really like that sort of thing). Instead, you can write a "normal" HTML page that
references the CORBA client applet and then run a converter program, which you can
download from the www.javasoft.com web site. Look for the HTML JRE 1.2 Plug-in
converter.

Why all this complexity? As of this writing, no browser supports the JDK 1.2, which is
required to use the Java IDL which we have covered. To solve this problem, Sun has
created a browser plug-in application that substitutes a JDK 1.2 virtual machine for the
browser's normal JVM. So, before running a CORBA Java applet, you need to
download the plug-in from the javasoft web site and configure your browser to use it.
Then you can run the converter mentioned previously to create the HTML such that the
plug-in is activated.

It sure was a lot easier in RMI! However, this complexity results from the fact that
browsers typically lag the JDK. Once the browser vendors become compliant with JDK
1.2, writing CORBA client applets will be a lot easier.

Now on to deployment!

Deployment Overview

Start the name service running
Start the object server running
Setup the web server (applets only)
Run the client application or applet

This page shows the overall steps involved in setting up an CORBA system.
We first need to start the name service, then start the main program that
creates the object. If we are using an applet client, we also need to deploy
and start a web server. Unlike in RMI, we don't need a web server if we are
using standalone client applications. But in either case, we then need to run
the client, either by bringing it up in a web browser in the case of an applet,
or by running it from the command line.

Starting the Name Service

CORBA
Name

Service

Name Server Host

command prompt (on server)

c> start tnameserv

The first step is to start the CORBA name service program, which typically
runs on the same computer as the object server itself. The name server
supplied with the JDK 1.2 is a transient name server - like the RMI registry, it
does not save registered names in permanent storage. In other words, if you
close the name server program, any registered names are lost.

Unlike the RMI registry however, the JDK transient name server actually
displays something in its window - the info it displays is not particularly
useful, but it's interesting to look at!

As before, this diagram shows the Microsoft Windows command to start the
name server as a background process; see your operating system's
documentation for more details.

Starting the Object Server CORBA Object Server (myserver.com)

remote
object

MeetingServer JVM

MeetingServer.class
MeetingServant.class
_MeetingImplBase.class
_MeetingStub.class
Meeting.class

MeetingServer's CLASSPATH:

CORBA
Name

Service

command prompt (on server)

c> java MeetingServer

Once we have the name server running, we can start the object server.
Remember that the object server creates a MeetingServant object and then
registers it in the name service. The diagram shows the server virtual
machine containing the MeetingServant object.

The MeetingServer program needs access to the class files shown in the
diagram. The two most noteworthy are: MeetingServer, which contains the
code for the main program itself and MeetingServant, which is the remote
object itself.

Now it's on to the client!

Running a Client Application

command prompt (on client)

c> java MeetingClient -ORBInitialHost myserver.com

client computer

MeetingClient.class
Meeting.class
_MeetingStub.class
MeetingHelper.class

MeetingClient JVM

stub

MeetingClient's CLASSPATH:

IIOP

CORBA Object Server (myserver.com)

remote

object

MeetingServer
JVM

MeetingServer.class
MeetingServant.class
_MeetingImplBase.class
_MeetingStub.class
Meeting.class

MeetingServer's
CLASSPATH:

CORBA
Name

Service

Let's first look at running a standalone client application -- we'll look at
applets next. On the client computer, you need to install the files shown in
the diagram, which include the client program itself, the remote interface and
the stub and helper classes. To run the client, use the command line shown
in the diagram. The ORBInitialHost flag indicates the host name where the
name server is running, in this case, myserver.com.

Notice that this setup is a bit different than we saw with RMI - the CORBA
infrastructure will not automatically download the stub class files, so we need
to manually install them on the client. On the plus side, in CORBA, we don't
have to worry about the security policy file!

Now let's look at a client applet.

Running a Client Applet
Web Server

public void init()
{
 // RMI initialization
}

client computer

http protocol

corbaApplet.html
MeetingClientApplet.class
Meeting.class
MeetingHelper.class
_MeetingStub.class

My Browser
http://mywebserver/corbaApplet.html

Browser's JVM

stub

IIOP

CORBA Object Server (myserver.com)

remote
object

MeetingServer
JVM

MeetingServer.class
MeetingServant.class
_MeetingImplBase.class
_MeetingStub.class
Meeting.class

MeetingServer's
CLASSPATH:

CORBA
Name

Service

In some ways, CORBA client applets are easier to deploy than standalone
applications. That's mostly because the Java applet infrastructure itself
knows how to download class files, so we don't have to pre-install our code
on the client Instead, the infrastructure will download them from the web
server.

The flip side is that since browsers are not up-to-date with the JDK 1.2, so
we need to install the 1.2 browser plug-in on the client as discussed earlier.
We also need to use the HTML converter program to generate the HTML
that we install on the web browser.

We need to repeat the message we gave when we discussed applets in RMI
with regards to digital signing: if you don't sign your applet, you must put the
web server and the object server on the same computer to avoid security
violations.

This concludes our discussion of CORBA and Java!

Summary

Well, I hope that you have found this introduction to distributed object with
Java to be a good use of your time. In short order, we discussed distributed
object theory, and then took a closer look at the programming models for
Java RMI and CORBA.

And like the folks at Twisted Transistor, Inc., you should now be ready to
start work on using these techniques to improve your business.

